A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕
- Author: Arthur Berry
- Performer: -
Book online «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕». Author Arthur Berry
166. The external events of Newton’s life during the next 22 years may be very briefly dismissed. He was elected a Fellow in 1667, became M.A. in due course in the following year, and was appointed Lucasian Professor of Mathematics, in succession to his friend Isaac Barrow, in 1669. Three years later he was elected a Fellow of the recently founded Royal Society. With the exception of some visits to his Lincolnshire home, he appears to have spent almost the whole period in quiet study at Cambridge, and the history of his life is almost exclusively the history of his successive discoveries.
167. His scientific work falls into three main groups, astronomy (including dynamics), optics, and pure mathematics. He also spent a good deal of time on experimental work in chemistry, as well as on heat and other branches of physics, and in the latter half of his life devoted much attention to questions of chronology and theology; in none of these subjects, however, did he produce results of much importance.
168. In forming an estimate of Newton’s genius it is of course important to bear in mind the range of subjects with which he dealt; from our present point of view, however, his mathematics only presents itself as a tool to be used in astronomical work; and only those of his optical discoveries which are of astronomical importance need be mentioned here. In 1668 he constructed a reflecting telescope, that is, a telescope in which the rays of light from the object viewed are concentrated by means of a curved mirror instead of by a lens, as in the refracting telescopes of Galilei and Kepler. Telescopes on this principle, differing however in some important particulars from Newton’s, had already been described in 1663 by James Gregory (1638-1675), with whose ideas Newton was acquainted, but it does not appear that Gregory had actually made an instrument. Owing to mechanical difficulties in construction, half a century elapsed before reflecting telescopes were made which could compete with the best refractors of the time, and no important astronomical discoveries were made with them before the time of William Herschel (chapter XII.), more than a century after the original invention.
Newton’s discovery of the effect of a prism in resolving a beam of white light into different colours is in a sense the basis of the method of spectrum analysis (chapter XIII., § 299), to which so many astronomical discoveries of the last 40 years are due.
169. The ideas by which Newton is best known in each of his three great subjects—gravitation, his theory of colours, and fluxions—seem to have occurred to him and to have been partly thought out within less than two years after he took his degree, that is before he was 24. His own account—written many years afterwards—gives a vivid picture of his extraordinary mental activity at this time:—
“In the beginning of the year 1665 I found the method of approximating Series and the Rule for reducing any dignity of any Binomial into such a series. The same year in May I found the method of tangents of Gregory and Slusius, and in November had the direct method of Fluxions, and the next year in January had the Theory of Colours, and in May following I had entrance into the inverse method of Fluxions. And the same year I began to think of gravity extending to the orb of the Moon, and having found out how to estimate the force with which [a] globe revolving within a sphere presses the surface of the sphere, from Kepler’s Rule of the periodical times of the Planets being in a sesquialterate proportion of their distances from the centers of their orbs I deduced that the forces which keep the Planets in their orbs must [be] reciprocally as the squares of their distances from the centers about which they revolve: and thereby compared the force requisite to keep the Moon in her orb with the force of gravity at the surface of the earth, and found them answer pretty nearly. All this was in the two plague years of 1665 and 1666, for in those days I was in the prime of my age for invention, and minded Mathematicks and Philosophy more than at any time since.”101
170. He spent a considerable part of this time (1665-1666) at Woolsthorpe, on account of the prevalence of the plague.
The well-known story, that he was set meditating on gravity by the fall of an apple in the orchard, is based on good authority, and is perfectly credible in the sense that the apple may have reminded him at that particular time of certain problems connected with gravity. That the apple seriously suggested to him the existence of the problems or any key to their solution is wildly improbable.
Several astronomers had already speculated on the “cause” of the known motions of the planets and satellites; that is they had attempted to exhibit these motions as consequences of some more fundamental and more general laws. Kepler, as we have seen (chapter VII., § 150), had pointed out that the motions in question should not be considered as due to the influence of mere geometrical points, such as the centres of the old epicycles, but to that of other bodies; and in particular made some attempt to explain the motion of the planets as due to a special kind of influence emanating from the sun. He went, however, entirely wrong by looking for a force to keep up the motion of the planets and as it were push them along. Galilei’s discovery that the motion of a body goes on indefinitely unless there is some cause at work to alter or stop it, at once put a new aspect on this as on other mechanical problems; but he himself did not develop his idea in this particular direction. Giovanni Alfonso Borelli (1608-1679), in a book on Jupiter’s satellites published in 1666, and therefore about the time of Newton’s first work on the subject, pointed out that a body revolving in a circle (or similar curve) had a tendency to recede from the centre, and that in the case of the planets this might be supposed to be counteracted by some kind of attraction towards the sun. We have then here the idea— in a very indistinct form certainly—that the motion of a planet is to be explained, not by a force acting in the direction in which it is moving, but by a force directed towards the sun, that is about at right angles to the direction of the planet’s motion. Huygens carried this idea much further—though without special reference to astronomy—and obtained (chapter VIII., § 158) a numerical measure for the tendency of a body moving in a circle to recede from the centre, a tendency which had in some way to be counteracted if the body was not to fly away. Huygens published his work in 1673, some years after Newton had obtained his corresponding result, but before he had published anything; and there can be no doubt that the two men worked quite independently.
Comments (0)