PrroBooks.com » Science » The Different Forms of Flowers on Plants of the Same Species by Charles Robert Darwin (rainbow fish read aloud txt) 📕

Book online «The Different Forms of Flowers on Plants of the Same Species by Charles Robert Darwin (rainbow fish read aloud txt) 📕». Author Charles Robert Darwin



1 ... 8 9 10 11 12 13 14 15 16 ... 52
the season, when uncovered, the flowers were freely visited by pollen-collecting bees; nevertheless, although many capsules were produced, not one contained a single seed. During the following year this same plant was left uncovered near plants of V. thapsus and lychnitis; but again it did not produce a single seed. Four flowers, however, which were repeatedly fertilised with pollen of V. lychnitis, whilst the plant was temporarily kept under a net, produced four capsules, which contained five, one, two, and two seeds; at the same time three flowers were fertilised with pollen of V. thapsus, and these produced two, two, and three seeds. To show how unproductive these seven capsules were, I may state that a fine capsule from a plant of V. thapsus growing close by contained above 700 seeds. These facts led me to search the moderately-sized field whence my plant had been removed, and I found in it many plants of V. thapsus and lychnitis as well as thirty-three plants intermediate in character between these two species. These thirty-three plants differed much from one another. In the branching of the stem they more closely resembled V. lychnitis than V. thapsus, but in height the latter species. In the shape of their leaves they often closely approached V. lychnitis, but some had leaves extremely woolly on the upper surface and decurrent like those of V. thapsus; yet the degree of woolliness and of decurrency did not always go together. In the petals being flat and remaining open, and in the manner in which the anthers of the longer stamens were attached to the filaments, these plants all took more after V. lychnitis than V. thapsus. In the yellow colour of the corolla they all resembled the latter species. On the whole, these plants appeared to take rather more after V. lychnitis than V. thapsus. On the supposition that they were hybrids, it is not an anomalous circumstance that they should all have produced yellow flowers; for Gartner crossed white and yellow-flowered varieties of Verbascum, and the offspring thus produced never bore flowers of an intermediate tint, but either pure white or pure yellow flowers, generally of the latter colour. (2/24. 'Bastardzeugung' page 307.)
My observations were made in the autumn; so that I was able to collect some half-matured capsules from twenty of the thirty-three intermediate plants, and likewise capsules of the pure V. lychnitis and thapsus growing in the same field. All the latter were filled with perfect but immature seeds, whilst the capsules of the twenty intermediate plants did not contain one single perfect seed. These plants, consequently, were absolutely barren. From this fact,--from the one plant which was transplanted into my garden yielding when artificially fertilised with pollen from V. lychnitis and thapsus some seeds, though extremely few in number,--from the circumstance of the two pure species growing in the same field,--and from the intermediate character of the sterile plants, there can be no doubt that they were hybrids. Judging from the position in which they were chiefly found, I am inclined to believe they were descended from V. thapsus as the seed-bearer, and V. lychnitis as the pollen-bearer.
It is known that many species of Verbascum, when the stem is jarred or struck by a stick, cast off their flowers. (2/25. This was first observed by Correa de Serra: see Sir J.E. Smith's 'English Flora' 1824 volume 1 page 311; also 'Life of Sir J.E. Smith' volume 2 page 210. I was guided to these references by the Reverend W.A. Leighton, who observed this same phenomenon with V. virgatum.) This occurs with V. thapsus, as I have repeatedly observed. The corolla first separates from its attachment, and then the sepals spontaneously bend inwards so as to clasp the ovarium, pushing off the corolla by their movement, in the course of two or three minutes. Nothing of this kind takes place with young barely expanded flowers. With Verbascum lychnitis and, as I believe, V. phoeniceum the corolla is not cast off, however often and severely the stem may be struck. In this curious property the above-described hybrids took after V. thapsus; for I observed, to my surprise, that when I pulled off the flower-buds round the flowers which I wished to mark with a thread, the slight jar invariably caused the corollas to fall off.
These hybrids are interesting under several points of view. First, from the number found in various parts of the same moderately-sized field. That they owed their origin to insects flying from flower to flower, whilst collecting pollen, there can be no doubt. Although insects thus rob the flowers of a most precious substance, yet they do great good; for, as I have elsewhere shown, the seedlings of V. thapsus raised from flowers fertilised with pollen from another plant, are more vigorous than those raised from self-fertilised flowers. (2/26. 'The Effects of Cross and Self-fertilisation' 1876 page 89.) But in this particular instance the insects did great harm, as they led to the production of utterly barren plants. Secondly, these hybrids are remarkable from differing much from one another in many of their characters; for hybrids of the first generation, if raised from uncultivated plants, are generally uniform in character. That these hybrids belonged to the first generation we may safely conclude, from the absolute sterility of all those observed by me in a state of nature and of the one plant in my garden, excepting when artificially and repeatedly fertilised with pure pollen, and then the number of seeds produced was extremely small. As these hybrids varied so much, an almost perfectly graduated series of forms, connecting together the two widely distinct parent-species, could easily have been selected. This case, like that of the common oxlip, shows that botanists ought to be cautious in inferring the specific identity of two forms from the presence of intermediate gradations; nor would it be easy in the many cases in which hybrids are moderately fertile to detect a slight degree of sterility in such plants growing in a state of nature and liable to be fertilised by either parent-species. Thirdly and lastly, these hybrids offer an excellent illustration of a statement made by that admirable observer Gartner, namely, that although plants which can be crossed with ease generally produce fairly fertile offspring, yet well-pronounced exceptions to this rule occur; and here we have two species of Verbascum which evidently cross with the greatest ease, but produce hybrids which are excessively sterile.


CHAPTER III. HETEROSTYLED DIMORPHIC PLANTS--continued.
Linum grandiflorum, long-styled form utterly sterile with own-form pollen. Linum perenne, torsion of the pistils in the long-styled form alone. Homostyled species of Linum. Pulmonaria officinalis, singular difference in self-fertility between the English and German long-styled plants. Pulmonaria angustifolia shown to be a distinct species, long-styled form completely self-sterile. Polygonum fagopyrum. Various other heterostyled genera. Rubiaceae. Mitchella repens, fertility of the flowers in pairs. Houstonia. Faramea, remarkable difference in the pollen-grains of the two forms; torsion of the stamens in the short-styled form alone; development not as yet perfect. The heterostyled structure in the several Rubiaceous genera not due to descent in common.
It has long been known that several species of Linum present two forms (3/1. Treviranus has shown that this is the case in his review of my original paper 'Botanische Zeitung' 1863 page 189.), and having observed this fact in L. flavum more than thirty years ago, I was led, after ascertaining the nature of heterostylism in Primula, to examine the first species of Linum which I met with, namely, the beautiful L. grandiflorum. This plant exists under two forms, occurring in about equal numbers, which differ little in structure, but greatly in function. The foliage, corolla, stamens, and pollen-grains (the latter examined both distended with water and dry) are alike in the two forms. The difference is confined to the pistil; in the short-styled form the styles and the stigmas are only about half the length of those in the long- styled. A more important distinction is, that the five stigmas in the short- styled form diverge greatly from one another, and pass out between the filaments of the stamens, and thus lie within the tube of the corolla. In the long-styled form the elongated stigmas stand nearly upright, and alternate with the anthers. In this latter form the length of the stigmas varies considerably, their upper extremities projecting even a little above the anthers, or reaching up only to about their middle. Nevertheless, there is never the slightest difficulty in distinguishing between the two forms; for, besides the difference in the divergence of the stigmas, those of the short-styled form never reach even to the bases of the anthers. In this form the papillae on the stigmatic surfaces are shorter, darker-coloured, and more crowded together than in the long-styled form; but these differences seem due merely to the shortening of the stigma, for in the varieties of the long-styled form with shorter stigmas, the papillae are more crowded and darker-coloured than in those with the longer stigmas. Considering the slight and variable differences between the two forms of this Linum, it is not surprising that hitherto they have been overlooked.
In 1861 I had eleven plants in my garden, eight of which were long-styled, and three short-styled. Two very fine long-styled plants grew in a bed a hundred yards off all the others, and separated from them by a screen of evergreens. I marked twelve flowers, and placed on their stigmas a little pollen from the short-styled plants. The pollen of the two forms is, as stated, identical in appearance; the stigmas of the long-styled flowers were already thickly covered with their own pollen--so thickly that I could not find one bare stigma, and it was late in the season, namely, September 15th. Altogether, it seemed almost childish to expect any result. Nevertheless from my experiments on Primula, I had faith, and did not hesitate to make the trial, but certainly did not anticipate the full result which was obtained. The germens of these twelve flowers all swelled, and ultimately six fine capsules (the seed of which germinated on the following year) and two poor capsules were produced; only four capsules shanking off. These same two long-styled plants produced, in the course of the summer, a vast number of flowers, the stigmas of which were covered with their own pollen; but they all proved absolutely barren, and their germens did not even swell.
The nine other plants, six long-styled and three short-styled, grew not very far apart in my flower-garden. Four of these long-styled plants produced no seed- capsules; the fifth produced two; and the remaining one grew so close to a short-styled plant that their branches touched, and this produced twelve capsules, but they were poor ones. The case was different with the short-styled plants. The one which grew close to the long-styled plant produced ninety-four imperfectly fertilised capsules containing a multitude of bad seeds, with a moderate number of good ones. The two other short-styled plants growing together were small, being partly smothered by other plants; they did not stand very close to any long-styled plants, yet they yielded together nineteen capsules. These facts seem to show that the short-styled plants are more fertile with their own pollen than are the long-styled, and we shall immediately see that this probably is the case. But I suspect that the difference in fertility between the two forms was in this instance in part due to a distinct cause. I repeatedly watched the flowers, and only once saw a humble-bee momentarily alight on one, and then fly away. If bees had visited the several plants, there cannot be a doubt that the four long-styled plants, which did not produce a single capsule, would have borne an abundance. But several times I saw small diptera sucking the flowers; and these insects, though not visiting the flowers with anything like the regularity of bees, would carry a little pollen from one form to
1 ... 8 9 10 11 12 13 14 15 16 ... 52

Free e-book «The Different Forms of Flowers on Plants of the Same Species by Charles Robert Darwin (rainbow fish read aloud txt) 📕» - read online now

Similar e-books:

Comments (0)

There are no comments yet. You can be the first!
Add a comment