PrroBooks.com » Science » The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕

Book online «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕». Author Charles Darwin



1 ... 13 14 15 16 17 18 19 20 21 ... 99
stem has grown between the points of insertion of the two petioles, so that they do not stand opposite to one another; in another case the separation amounted to one-fifth of an inch. The smaller cotyledon of one seedling was extremely thin, and not half the length of the larger one, so that it was clearly becoming rudimentary,* In all these seedlings the hypocotyl was enlarged or swollen.

 

Fig. 61. Abronia umbellata: seedling twice natural size: c cotyledon; c’, rudimentary cotyledon; h, enlarged hypocotyl, with a heel or projection (h’) at the lower end; r, radicle.

 

With Abronia umbellata one of the cotyledons is quite rudimentary, as may be seen (c’) in Fig. 61. In this specimen it consisted of a little green flap, 1/84th inch in length, destitute of a petiole and covered with glands like those on the fully developed cotyledon (c). At first it stood opposite to the larger cotyledon; but as the petiole of the latter increased in length and grew in the same line with the hypocotyl (h), the rudiment appeared in older seedlings as if seated some way down the hypocotyl. With Abronia arenaria there is a similar rudiment, which in one * In Pachira aquatica, as described by Mr. R. I. Lynch (‘Journal Linn. Soc.

Bot.’ vol. xvii. 1878, p. 147), one of the hypogean cotyledons is of immense size; the other is small and soon falls off; the pair do not always stand opposite. In another and very different water-plant, ‘Trapa natans’, one of the cotyledons, filled with farinaceous matter, is much larger than the other, which is scarcely visible, as is stated by Aug. de Candolle, ‘Physiologie Veg.’ tom. ii. p. 834, 1832.

[page 96]

 

specimen was only 1/100th and in another 1/60th inch in length; it ultimately appeared as if seated halfway down the hypocotyl. In both these species the hypocotyl is so much enlarged, especially at a very early age, that it might almost be called a corm. The lower end forms a heel or projection, the use of which will hereafter be described.

 

In Cyclamen Persicum the hypocotyl, even whilst still within the seed, is enlarged into a regular corm,* and only a single cotyledon is at first developed (see former Fig. 57). With Ranunculus ficaria two cotyledons are never produced, and here one of the secondary radicles is developed at an early age into a so-called bulb.** Again, certain species of Chaerophyllum and Corydalis produce only a single cotyledon;*** in the former the hypocotyl, and in the latter the radicle is enlarged, according to Irmisch, into a bulb.

 

In the several foregoing cases one of the cotyledons is delayed in its development, or reduced in size, or rendered rudimentary, or quite aborted; but in other cases both cotyledons are represented by mere rudiments. With Opuntia basilaris this is not the case, for both cotyledons are thick and large, and the hypocotyl shows at first no signs of enlargement; but afterwards, when the cotyledons have withered and disarticulated themselves, it becomes thickened, and from its tapering form, together with its smooth, tough, brown skin, appears, when ultimately drawn down to some depth into the soil, like a root. On the other * Dr. H. Gressner, ‘Bot. Zeitung,’ 1874, p. 824.

 

** Irmisch, ‘Beitr�ge zur Morphologie der Pflanzen,’ 1854, pp. 11, 12; ‘Bot. Zeitung,’ 1874, p. 805.

 

*** Delpino, ‘Rivista Botanica,’ 1877, p. 21. It is evident from Vaucher’s account (‘Hist. Phys. des Plantes d’Europe,’ tom. i. 1841, p. 149) of the germination of the seeds of several species of Corydalis, that the bulb or tubercule begins to be formed at an extremely early age.

[page 97]

 

hand, with several other Cacteae, the hypocotyl is from the first much enlarged, and both cotyledons are almost or quite rudimentary. Thus with Cereus Landbeckii two little triangular projections, representing the cotyledons, are narrower than the hypocotyl, which is pear-shaped, with the point downwards. In Rhipsalis cassytha the cotyledons are represented by mere points on the enlarged hypocotyl. In Echinocactus viridescens the hypocotyl is globular, with two little prominences on its summit. In Pilocereus Houlletii the hypocotyl, much swollen in the upper part, is merely notched on the summit; and each side of the notch evidently represents a cotyledon. Stapelia sarpedon, a member of the very distinct family of the Asclepiadeae, is fleshy like a cactus; and here again the upper part of the flattened hypocotyl is much thickened and bears two minute cotyledons, which, measured internally, were only .15 inch in length, and in breadth not equal to one-fourth of the diameter of the hypocotyl in its narrow axis; yet these minute cotyledons are probably not quite useless, for when the hypocotyl breaks through the ground in the form of an arch, they are closed or pressed against one another, and thus protect the plumule. They afterwards open.

 

From the several cases now given, which refer to widely distinct plants, we may infer that there is some close connection between the reduced size of one or both cotyledons and the formation, by the enlargement of the hypocotyl or of the radicle, of a so-called bulb. But it may be asked, did the cotyledons first tend to abort, or did a bulb first begin to be formed?

As all dicotyledons naturally produce two well-developed cotyledons, whilst the thickness of the hypocotyl and of the radicle differs much in different plants, it seems probable that these latter organs first became from [page 98]

some cause thickened—in several instances apparently in correlation with the fleshy nature of the mature plant—so as to contain a store of nutriment sufficient for the seedling, and then that one or both cotyledons, from being superfluous, decreased in size. It is not surprising that one cotyledon alone should sometimes have been thus affected, for with certain plants, for instance the cabbage, the cotyledons are at first of unequal size, owing apparently to the manner in which they are packed within the seed. It does not, however, follow from the above connection, that whenever a bulb is formed at an early age, one or both cotyledons will necessarily become superfluous, and consequently more or less rudimentary.

Finally, these cases offer a good illustration of the principle of compensation or balancement of growth, or, as Goethe expresses it, “in order to spend on one side, Nature is forced to economise on the other side.”

 

Circumnutation and other movements of Hypocotyls and Epicotyls, whilst still arched and buried beneath the ground, and whilst breaking through it.—According to the position in which a seed may chance to have been buried, the arched hypocotyl or epicotyl will begin to protrude in a horizontal, a more or less inclined, or in a vertical plane. Except when already standing vertically upwards, both legs of the arch are acted on from the earliest period by apogeotropism. Consequently they both bend upwards until the arch becomes vertical. During the whole of this process, even before the arch has broken through the ground, it is continually trying to circumnutate to a slight extent; as it likewise does if it happens at first to stand vertically up,—all which cases have been observed and described, more or less fully, in the last chapter. After the arch has grown to some

[page 99]

height upwards the basal part ceases to circumnutate, whilst the upper part continues to do so.

 

That an arched hypocotyl or epicotyl, with the two legs fixed in the ground, should be able to circumnutate, seemed to us, until we had read Prof. Wiesner’s observations, an inexplicable fact. He has shown* in the case of certain seedlings, whose tips are bent downwards (or which nutate), that whilst the posterior side of the upper or dependent portion grows quickest, the anterior and opposite side of the basal portion of the same internode grows quickest; these two portions being separated by an indifferent zone, where the growth is equal on all sides. There may be even more than one indifferent zone in the same internode; and the opposite sides of the parts above and below each such zone grow quickest. This peculiar manner of growth is called by Wiesner “undulatory nutation.”

Circumnutation depends on one side of an organ growing quickest (probably preceded by increased turgescence), and then another side, generally almost the opposite one, growing quickest. Now if we look at an arch like this [upside down U] and suppose the whole of one side—we will say the whole convex side of both legs—to increase in length, this would not cause the arch to bend to either side. But if the outer side or surface of the left leg were to increase in length the arch would be pushed over to the right, and this would be aided by the inner side of the right leg increasing in length. If afterwards the process were reversed, the arch would be pushed over to the opposite or left side, and so on alternately,—that is, it would circumnutate. As an arched hypo-

 

* ‘Die undulirende Nutation der Internodien,’ Akad. der Wissench. (Vienna), Jan. 17th, 1878. Also published separately, see p. 32.

[page 100]

 

cotyl, with the two legs fixed in the ground, certainly circumnutates, and as it consists of a single internode, we may conclude that it grows in the manner described by Wiesner. It may be added, that the crown of the arch does not grow, or grows very slowly, for it does not increase much in breadth, whilst the arch itself increases greatly in height.

 

The circumnutating movements of arched hypocotyls and epicotyls can hardly fail to aid them in breaking through the ground, if this be damp and soft; though no doubt their emergence depends mainly on the force exerted by their longitudinal growth. Although the arch circumnutates only to a slight extent and probably with little force, yet it is able to move the soil near the surface, though it may not be able to do so at a moderate depth. A pot with seeds of Solanum palinacanthum, the tall arched hypocotyls of which had emerged and were growing rather slowly, was covered with fine argillaceous sand kept damp, and this at first closely surrounded the bases of the arches; but soon a narrow open crack was formed round each of them, which could be accounted for only by their having pushed away the sand on all sides; for no such cracks surrounded some little sticks and pins which had been driven into the sand. It has already been stated that the cotyledons of Phalaris and Avena, the plumules of Asparagus and the hypocotyls of Brassica, were likewise able to displace the same kind of sand, either whilst simply circumnutating or whilst bending towards a lateral light.

 

As long as an arched hypocotyl or epicotyl remains buried beneath the ground, the two legs cannot separate from one another, except to a slight extent from the yielding of the soil; but as soon as the arch rises above the ground, or at an earlier period if

[page 101]

the pressure of the surrounding earth be artificially removed, the arch immediately begins to straighten itself. This no doubt is due to growth along the whole inner surface of both legs of the arch; such growth being checked or prevented, as long as the two legs of the arch are firmly pressed together. When the earth is removed all round an arch and the two legs are tied together at their bases, the growth on the under side of the crown causes it after a time to become much flatter and broader than naturally occurs. The straightening process consists of a modified form of circumnutation, for the lines described during this process (as with the hypocotyl of Brassica, and the epicotyls of Vicia and Corylus) were often plainly zigzag and sometimes looped. After hypocotyls or epicotyls have emerged from the ground, they quickly become perfectly straight. No

1 ... 13 14 15 16 17 18 19 20 21 ... 99

Free e-book «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕» - read online now

Similar e-books:

Comments (0)

There are no comments yet. You can be the first!
Add a comment