PrroBooks.com » Science » Five of Maxwell's Papers by James Clerk Maxwell (classic books for 13 year olds .txt) 📕

Book online «Five of Maxwell's Papers by James Clerk Maxwell (classic books for 13 year olds .txt) 📕». Author James Clerk Maxwell



1 2 3 4 5 6 7 8 9
method of exposition is found, than that in which bare processes of reasoning and calculation form the principal subject of discourse.

Now a truly scientific illustration is a method to enable the mind to grasp some conception or law in one branch of science, by placing before it a conception or a law in a different branch of science, and directing the mind to lay hold of that mathematical form which is common to the corresponding ideas in the two sciences, leaving out of account for the present the difference between the physical nature of the real phenomena.

The correctness of such an illustration depends on whether the two systems of ideas which are compared together are really analogous in form, or whether, in other words, the corresponding physical quantities really belong to the same mathematical class. When this condition is fulfilled, the illustration is not only convenient for teaching science in a pleasant and easy manner, but the recognition of the formal analogy between the two systems of ideas leads to a knowledge of both, more profound than could be obtained by studying each system separately.

There are men who, when any relation or law, however complex, is put before them in a symbolical form, can grasp its full meaning as a relation among abstract quantities. Such men sometimes treat with indifference the further statement that quantities actually exist in nature which fulfil this relation. The mental image of the concrete reality seems rather to disturb than to assist their contemplations. But the great majority of mankind are utterly unable, without long training, to retain in their minds the unembodied symbols of the pure mathematician, so that, if science is ever to become popular, and yet remain scientific, it must be by a profound study and a copious application of those principles of the mathematical classification of quantities which, as we have seen, lie at the root of every truly scientific illustration.

There are, as I have said, some minds which can go on contemplating with satisfaction pure quantities presented to the eye by symbols, and to the mind in a form which none but mathematicians can conceive.

There are others who feel more enjoyment in following geometrical forms, which they draw on paper, or build up in the empty space before them.

Others, again, are not content unless they can project their whole physical energies into the scene which they conjure up. They learn at what a rate the planets rush through space, and they experience a delightful feeling of exhilaration. They calculate the forces with which the heavenly bodies pull at one another, and they feel their own muscles straining with the effort.

To such men momentum, energy, mass are not mere abstract expressions of the results of scientific inquiry. They are words of power, which stir their souls like the memories of childhood.

For the sake of persons of these different types, scientific truth should be presented in different forms, and should be regarded as equally scientific whether it appears in the robust form and the vivid colouring of a physical illustration, or in the tenuity and paleness of a symbolical expression.

Time would fail me if I were to attempt to illustrate by examples the scientific value of the classification of quantities. I shall only mention the name of that important class of magnitudes having direction in space which Hamilton has called vectors, and which form the subject-matter of the Calculus of Quaternions, a branch of mathematics which, when it shall have been thoroughly understood by men of the illustrative type, and clothed by them with physical imagery, will become, perhaps under some new name, a most powerful method of communicating truly scientific knowledge to persons apparently devoid of the calculating spirit.

The mutual action and reaction between the different departments of human thought is so interesting to the student of scientific progress, that, at the risk of still further encroaching on the valuable time of the Section, I shall say a few words on a branch of physics which not very long ago would have been considered rather a branch of metaphysics. I mean the atomic theory, or, as it is now called, the molecular theory of the constitution of bodies.

Not many years ago if we had been asked in what regions of physical science the advance of discovery was least apparent, we should have pointed to the hopelessly distant fixed stars on the one hand, and to the inscrutable delicacy of the texture of material bodies on the other.

Indeed, if we are to regard Comte as in any degree representing the scientific opinion of his time, the research into what takes place beyond our own solar system seemed then to be exceedingly unpromising, if not altogether illusory.

The opinion that the bodies which we see and handle, which we can set in motion or leave at rest, which we can break in pieces and destroy, are composed of smaller bodies which we cannot see or handle, which are always in motion, and which can neither be stopped nor broken in pieces, nor in any way destroyed or deprived of the least of their properties, was known by the name of the Atomic theory. It was associated with the names of Democritus, Epicurus, and Lucretius, and was commonly supposed to admit the existence only of atoms and void, to the exclusion of any other basis of things from the universe.

In many physical reasonings and mathematical calculations we are accustomed to argue as if such substances as air, water, or metal, which appear to our senses uniform and continuous, were strictly and mathematically uniform and continuous.

We know that we can divide a pint of water into many millions of portions, each of which is as fully endowed with all the properties of water as the whole pint was; and it seems only natural to conclude that we might go on subdividing the water for ever, just as we can never come to a limit in subdividing the space in which it is contained. We have heard how Faraday divided a grain of gold into an inconceivable number of separate particles, and we may see Dr Tyndall produce from a mere suspicion of nitrite of butyle an immense cloud, the minute visible portion of which is still cloud, and therefore must contain many molecules of nitrite of butyle.

But evidence from different and independent sources is now crowding in upon us which compels us to admit that if we could push the process of subdivision still further we should come to a limit, because each portion would then contain only one molecule, an individual body, one and indivisible, unalterable by any power in nature.

Even in our ordinary experiments on very finely divided matter we find that the substance is beginning to lose the properties which it exhibits when in a large mass, and that effects depending on the individual action of molecules are beginning to become prominent.

The study of these phenomena is at present the path which leads to the development of molecular science.

That superficial tension of liquids which is called capillary attraction is one of these phenomena. Another important class of phenomena are those which are due to that motion of agitation by which the molecules of a liquid or gas are continually working their way from one place to another, and continually changing their course, like people hustled in a crowd.

On this depends the rate of diffusion of gases and liquids through each other, to the study of which, as one of the keys of molecular science, that unwearied inquirer into nature’s secrets, the late Prof. Graham, devoted such arduous labour.

The rate of electrolytic conduction is, according to Wiedemann’s theory, influenced by the same cause; and the conduction of heat in fluids depends probably on the same kind of action. In the case of gases, a molecular theory has been developed by Clausius and others, capable of mathematical treatment, and subjected to experimental investigation; and by this theory nearly every known mechanical property of gases has been explained on dynamical principles; so that the properties of individual gaseous molecules are in a fair way to become objects of scientific research.

Now Mr Stoney has pointed out[1] that the numerical results of experiments on gases render it probable that the mean distance of their particles at the ordinary temperature and pressure is a quantity of the same order of magnitude as a millionth of a millimetre, and Sir William Thomson has since[2] shewn, by several independent lines of argument, drawn from phenomena so different in themselves as the electrification of metals by contact, the tension of soap-bubbles, and the friction of air, that in ordinary solids and liquids the average distance between contiguous molecules is less than the hundred-millionth, and greater than the two-thousand-millionth of a centimetre.

[1] Phil. Mag., Aug. 1868. [2] Nature, March 31, 1870.

These, of course, are exceedingly rough estimates, for they are derived from measurements some of which are still confessedly very rough; but if at the present time, we can form even a rough plan for arriving at results of this kind, we may hope that, as our means of experimental inquiry become more accurate and more varied, our conception of a molecule will become more definite, so that we may be able at no distant period to estimate its weight with a greater degree of precision.

A theory, which Sir W. Thomson has founded on Helmholtz’s splendid hydrodynamical theorems, seeks for the properties of molecules in the ring vortices of a uniform, frictionless, incompressible fluid. Such whirling rings may be seen when an experienced smoker sends out a dexterous puff of smoke into the still air, but a more evanescent phenomenon it is difficult to conceive. This evanescence is owing to the viscosity of the air; but Helmholtz has shewn that in a perfect fluid such a whirling ring, if once generated, would go on whirling for ever, would always consist of the very same portion of the fluid which was first set whirling, and could never be cut in two by any natural cause. The generation of a ring-vortex is of course equally beyond the power of natural causes, but once generated, it has the properties of individuality, permanence in quantity, and indestructibility. It is also the recipient of impulse and of energy, which is all we can affirm of matter; and these ring-vortices are capable of such varied connexions and knotted self-involutions, that the properties of differently knotted vortices must be as different as those of different kinds of molecules can be.

If a theory of this kind should be found, after conquering the enormous mathematical difficulties of the subject, to represent in any degree the actual properties of molecules, it will stand in a very different scientific position from those theories of molecular action which are formed by investing the molecule with an arbitrary system of central forces invented expressly to account for the observed phenomena.

In the vortex theory we have nothing arbitrary, no central forces or occult properties of any other kind. We have nothing but matter and motion, and when the vortex is once started its properties are all determined from the original impetus, and no further assumptions are possible.

Even in the present undeveloped state of the theory, the contemplation of the individuality and indestructibility of a ring-vortex in a perfect fluid cannot fail to disturb the commonly received opinion that a molecule, in order to be permanent, must be a very hard body.

In fact one of the first conditions which a molecule must fulfil is, apparently, inconsistent with its being a single hard body. We know from those spectroscopic researches which have thrown so much light on different branches of science, that a molecule can be set into a state of internal vibration, in which it gives off to the surrounding medium light of definite refrangibility—light, that is,

1 2 3 4 5 6 7 8 9

Free e-book «Five of Maxwell's Papers by James Clerk Maxwell (classic books for 13 year olds .txt) 📕» - read online now

Similar e-books:

Comments (0)

There are no comments yet. You can be the first!
Add a comment