PrroBooks.com » Science » The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕

Book online «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕». Author Charles Darwin



1 ... 76 77 78 79 80 81 82 83 84 ... 99
illuminated part.

 

The lower halves of five young hypocotyls were surrounded by unpainted goldbeaters’ skin, and these, after an exposure of 8 h. before a paraffin lamp, all became as much bowed to the light as the free seedlings. The lower halves of 10 other young hypocotyls, similarly surrounded with the skin, were thickly painted with Indian ink; their upper and unprotected halves became well curved to the light, but their lower and protected halves remained vertical in all the cases excepting one, and on this the layer of paint was imperfect. This result seems to prove that the influence transmitted from the upper part is not sufficient to cause the lower part to bend, unless it be at the same time illuminated; but there remains the doubt, as in

[page 482]

the case of Phalaris, whether the skin covered with a rather thick crust of dry Indian ink did not mechanically prevent their curvature.

 

Beta vulgaris.—A few analogous experiments were tried on this plant, which is not very well adapted for the purpose, as the basal part of the hypocotyl, after it has grown to above half an inch in height, does not bend much on exposure to a lateral light. Four hypocotyls were surrounded close beneath their petioles with strips of thin tin-foil, .2 inch in breadth, and they remained upright all day before a paraffin lamp; two others were surrounded with strips .15 inch in breadth, and one of these remained upright, the other becoming bowed; the bandages in two other cases were only .1 inch in breadth, and both of these hypocotyls became bowed, though one only slightly, towards the light. The free seedlings in the same pots were all fairly well curved towards the light; and during the following night became nearly upright. The pots were now turned round and placed before a window, so that the opposite sides of the seedlings were exposed to the light, towards which all the unprotected hypocotyls became bent in the course of 7 h. Seven out of the 8 seedlings with bandages of tin-foil remained upright, but one which had a bandage only .1 inch in breadth, became curved to the light. On another occasion, the upper halves of 7 hypocotyls were surrounded with painted goldbeaters’ skin; of these 4

remained upright, and 3 became a little curved to the light: at the same time 4 other seedlings surrounded with unpainted skin, as well as the free ones in the same pots, all became bowed towards the lamp, before which they had been exposed during 22 hours.

 

Radicles of Sinapis alba.—The radicles of some plants are indifferent, as far as curvature is concerned, to the action of light; whilst others bend towards and others from it.* Whether these movements are of any service to the plant is very doubtful, at least in the case of subterranean roots; they probably result from the radicles being sensitive to contact, moisture, and gravitation, and as a consequence to other irritants which are never naturally encountered. The radicles of Sinapis alba, when immersed in water and exposed to a lateral light, bend from it, or are apheliotropic. They become bent for a length of about 4 mm. from their tips. To ascertain whether this movement * Sachs, ‘Physiologie V�g�tale,’ 1868, p. 44.

[page 483]

 

generally occurred, 41 radicles, which had germinated in damp sawdust, were immersed in water and exposed to a lateral light; and they all, with two doubtful exceptions, became curved from the light. At the same time the tips of 54 other radicles, similarly exposed, were just touched with nitrate of silver. They were blackened for a length of from .05 to .07 mm., and probably killed; but it should be observed that this did not check materially, if at all, the growth of the upper part; for several, which were measured, increased in the course of only 8 -9 h. by 5 to 7 mm. in length. Of the 54 cauterised radicles one case was doubtful, 25 curved themselves from the light in the normal manner, and 28, or more than half, were not in the least apheliotropic. There was a considerable difference, which we cannot account for, in the results of the experiments tried towards the end of April and in the middle of September. Fifteen radicles (part of the above 54) were cauterised at the former period and were exposed to sunshine, of which 12 failed to be apheliotropic, 2 were still apheliotropic, and 1 was doubtful. In September, 39 cauterised radicles were exposed to a northern light, being kept at a proper temperature; and now 23 continued to be apheliotropic in the normal manner, and only 16

failed to bend from the light. Looking at the aggregate results at both periods, there can be no doubt that the destruction of the tip for less than a millimeter in length destroyed in more than half the cases their power of moving from the light. It is probable that if the tips had been cauterised for the length of a whole millimeter, all signs of apheliotropism would have disappeared. It may be suggested that although the application of caustic does not stop growth, yet enough may be absorbed to destroy the power of movement in the upper part; but this suggestion must be rejected, for we have seen and shall again see, that cauterising one side of the tip of various kinds of radicles actually excites movement.

The conclusion seems inevitable that sensitiveness to light resides in the tip of the radicle of Sinapis alba; and that the tip when thus stimulated transmits some influence to the upper part, causing it to bend. The case in this respect is parallel with that of the radicles of several plants, the tips of which are sensitive to contact and to other irritants, and, as will be shown in the eleventh chapter, to gravitation.

[page 484]

 

CONCLUDING REMARKS AND SUMMARY OF CHAPTER.

 

We do not know whether it is a general rule with seedling plants that the illumination of the upper part determines the curvature of the lower part.

But as this occurred in the four species examined by us, belonging to such distinct families as the Gramineae, Cruciferae, and Chenopodeae, it is probably of common occurrence. It can hardly fail to be of service to seedlings, by aiding them to find the shortest path from the buried seed to the light, on nearly the same principle that the eyes of most of the lower crawling animals are seated at the anterior ends of their bodies. It is extremely doubtful whether with fully developed plants the illumination of one part ever affects the curvature of another part. The summits of 5 young plants of Asparagus officinalis (varying in height between 1.1 and 2.7

inches, and consisting of several short internodes) were covered with caps of tin-foil from 0.3 to 0.35 inch in depth; and the lower uncovered parts became as much curved towards a lateral light, as were the free seedlings in the same pots. Other seedlings of the same plant had their summits painted with Indian ink with the same negative result. Pieces of blackened paper were gummed to the edges and over the blades of some leaves on young plants of Tropaeolum majus and Ranunculus ficaria; these were then placed in a box before a window, and the petioles of the protected leaves became curved towards the light, as much as those of the unprotected leaves.

 

The foregoing cases with respect to seedling plants have been fully described, not only because the transmission of any effect from light is a new physiological fact, but because we think it tends to modify somewhat the current views on heliotropic movements. Until [page 485]

lately such movements were believed to result simply from increased growth on the shaded side. At present it is commonly admitted* that diminished light increases the turgescence of the cells, or the extensibility of the cell-walls, or of both together, on the shaded side, and that this is followed by increased growth. But Pfeffer has shown that a difference in the turgescence on the two sides of a pulvinus,—that is, an aggregate of small cells which have ceased to grow at an early age,—is excited by a difference in the amount of light received by the two sides; and that movement is thus caused without being followed by increased growth on the more turgescent side.** All observers apparently believe that light acts directly on the part which bends, but we have seen with the above described seedlings that this is not the case. Their lower halves were brightly illuminated for hours, and yet did not bend in the least towards the light, though this is the part which under ordinary circumstances bends the most.

It is a still more striking fact, that the faint illumination of a narrow stripe on one side of the upper part of the cotyledons of Phalaris determined the direction of the curvature of the lower part; so that this latter part did not bend towards the bright light by which it had been fully illuminated,

 

* Emil Godlewski has given (‘Bot. Zeitung,’ 1879, Nos. 6-9) an excellent account (p. 120) of the present state of the question. See also Vines in ‘Arbeiten des Bot. Inst. in W�rzburg,’ 1878, B. ii. pp. 114-147. Hugo de Vries has recently published a still more important article on this subject: ‘Bot Zeitung,’ Dec. 19th and 26th, 1879.

 

** ‘Die Periodischen Bewegungen der Blattorgane,’ 1875, pp. 7, 63, 123, etc. Frank has also insisted (‘Die Naturliche w�gerechte Richtung von Pflanzentheilen,’ 1870, p. 53) on the important part which the pulvini of the leaflets of compound leaves play in placing the leaflets in a proper position with respect to the light. This holds good, especially with the leaves of climbing plants, which are carried into all sorts of positions, ill-adapted for the action of the light.

[page 486]

 

but obliquely towards one side where only a little light entered. These results seem to imply the presence of some matter in the upper part which is acted on by light, and which transmits its effects to the lower part. It has been shown that this transmission is independent of the bending of the upper sensitive part. We have an analogous case of transmission in Drosera, for when a gland is irritated, the basal and not the upper or intermediate part of the tentacle bends. The flexible and sensitive filament of Dionaea likewise transmits a stimulus, without itself bending; as does the stem of Mimosa.

 

Light exerts a powerful influence on most vegetable tissues, and there can be no doubt that it generally tends to check their growth. But when the two sides of a plant are illuminated in a slightly different degree, it does not necessarily follow that the bending towards the illuminated side is caused by changes in the tissues of the same nature as those which lead to increased growth in darkness. We know at least that a part may bend from the light, and yet its growth may not be favoured by light. This is the case with the radicles of Sinapis alba, which are plainly apheliotropic; nevertheless, they grow quicker in darkness than in light.* So it is with many a�rial roots, according to Wiesner;** but there are other opposed cases. It appears, therefore, that light does not determine the growth of apheliotropic parts in any uniform manner.

 

We should bear in mind that the power of bending to the light is highly beneficial to most plants. There

 

* Francis Darwin, ‘�ber das Wachsthum negativ heliotropischer Wurzeln’: ‘Arbeiten des Bot. Inst. in W�rzburg,’ B. ii., Heft iii., 1880, p. 521.

 

** ‘Sitzb. der k. Akad. der Wissensch’ (Vienna), 1880, p. 12.

[page 487]

 

is therefore no improbability in this power having been specially acquired.

In several respects light seems

1 ... 76 77 78 79 80 81 82 83 84 ... 99

Free e-book «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕» - read online now

Similar e-books:

Comments (0)

There are no comments yet. You can be the first!
Add a comment