PrroBooks.com » Science » The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕

Book online «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕». Author Charles Darwin



1 ... 83 84 85 86 87 88 89 90 91 ... 99
and these were placed horizontally on the peat, being covered by a thin layer of it. They were thus left for an average period of 1 h. 37 m. The tips were then cut off transversely for a length of 1.5 mm., and immediately afterwards they were embedded vertically in the peat. In this position geotropism would not tend to induce any curvature, but if some influence had already been transmitted from the tip to the part which bends most, we might expect that this part would become curved in the direction in which geotropism had previously acted; for it should be noted that these radicles being now destitute of their sensitive tips, would not be prevented by geotropism from curving in any direction. The result was that of the sixteen vertically embedded radicles, four continued for several days to grow straight downwards, whilst twelve became more or less bowed laterally. In two of the twelve, a trace of curvature was perceptible in 3 h. 30 m., counting from the time when they had first been laid horizontally; and all twelve were plainly bowed in 6 h., and still more plainly in 9 h. In every one of them the curvature was directed towards the side which had been downwards whilst the radicles remained horizontal. The curvature extended for a length of from 5 to, in one instance, 8 mm., measured from the cut-off end. Of the twelve bowed radicles five became permanently bent into a right angle; the other seven were at first much less bent, and their curvature generally decreased after 24 h., but did not wholly disappear. This decrease of curvature would naturally follow, if an exposure of only 1 h. 37 m. to geotropism, served to modify the turgescence of the cells, but not their subsequent growth to the full extent. The five radicles which were rectangularly bent became fixed in this position, and they continued to grow out horizontally in the peat for a length of about 1

inch during from 4 to 6 days. By this time new tips had been formed; and it should be remarked that this regeneration occurred slower in the peat than in water, owing perhaps to the radicles being often looked at and thus disturbed. After the tips had been regenerated, geotropism was able to act on them, so that they now became bowed vertically downwards. An accurate drawing (Fig. 195) is given on the opposite page of one of these five radicles, reduced to half the natural size.

 

We next tried whether a shorter exposure to geotropism would suffice to produce an after-effect. Seven radicles were extended horizontally for an hour, instead of 1 h. 37 m. as in the

[page 527]

former trial; and after their tips (1.5 mm. in length) had been amputated, they were placed vertically in damp peat. Of these, three were not in the least affected and continued for days to grow straight downwards. Four showed after 8 h. 30 m. a mere trace of curvature in the direction in which they had been acted on by geotropism; and in this respect they differed much from those which had been exposed for 1 h. 37 m., for many of the latter were plainly curved in 6 h. The curvature of one of these four radicles almost disappeared after 24 h. In the second, the curvature increased during two days and then decreased. the third radicle became permanently bent, so that its terminal part made an angle of about 45o with its original vertical direction. The fourth radicle became horizontal.

These two, latter radicles continued during two more days to grow in the peat in the same directions, that is, at an angle of 45o beneath the horizon and horizontally. By the fourth morning new tips had been reformed, and now geotropism was able to act on them again, and they became bent perpendicularly downwards, exactly as in the case of the five radicles described in the last paragraph and as is shown in (Fig. 195) here given.

 

Fig. 195. Vicia faba: radicle, rectangularly bent at A, after the amputation of the tip, due to the previous influence of geotropism. L, side of bean which lay on the peat, whilst geotropism acted on the radicle. A, point of chief curvature of the radicle, whilst standing vertically downwards. B, point of chief curvature after the regeneration of the tip, when geotropism again acted. C, regenerated tip.

 

Lastly, five other radicles were similarly treated, but were exposed to geotropism during only 45 m. After 8 h. 30 m. only one was doubtfully affected; after 24 h. two were just perceptibly curved towards the side which had been acted on by geotropism; after 48 h. the one first mentioned had a radius of curvature of 60 mm. That this curvature was due to the action of geotropism during the horizontal position of the radicle, was shown after 4 days, when a new tip had been reformed, for it then grew perpendicularly downwards. We learn from this [page 528]

case that when the tips are amputated after an exposure to geotropism of only 45 m., though a slight influence is sometimes transmitted to the adjoining part of the radicle, yet this seldom suffices, and then only slowly, to induce even moderately well-pronounced curvature.

 

In the previously given experiments on 29 horizontally extended radicles with their tips amputated, only one grew irregularly in any marked manner, and this became bowed upwards at an angle of 65o. In Ciesielski’s experiments the radicles could not have grown very irregularly, for if they had done so, he could not have spoken confidently of the obliteration of all geotropic action. It is therefore remarkable that Sachs, who experimented on many radicles with their tips amputated, found extremely disordered growth to be the usual result. As horizontally extended radicles with amputated tips are sometimes acted on slightly by geotropism within a short time, and are often acted on plainly after one or two days, we thought that this influence might possibly prevent disordered growth, though it was not able to induce immediate curvature. Therefore 13

radicles, of which 6 had their tips amputated transversely for a length of 1.5 mm., and the other 7 for a length of only 0.5 mm., were suspended vertically in damp air, in which position they would not be affected by geotropism; but they exhibited no great irregularity of growth, whilst observed during 4 to 6 days. We next thought that if care were not taken in cutting off the tips transversely, one side of the stump might be irritated more than the other, either at first or subsequently during the regeneration of the tip, and that this might cause the radicle to bend to one side. It has also been shown in Chapter III. that if a thin slice be cut off one side of the tip of the radicle, this causes the radicle to bend from the sliced side. Accordingly, 30 radicles, with tips amputated for a length of 1.5 mm., were allowed to grow perpendicularly downwards into water. Twenty of them were amputated at an angle of 20o with a line transverse to their longitudinal axes; and such stumps appeared only moderately oblique. The remaining ten radicles were amputated at an angle of about 45o. Under these circumstances no less than 19 out of the 30

became much distorted in the course of 2 or 3 days. Eleven other radicles were similarly treated, excepting that only 1 mm. (including in this and all other cases the root-cap) was amputated; and of these only one grew much, and two others slightly

[page 529]

distorted; so that this amount of oblique amputation was not sufficient.

Out of the above 30 radicles, only one or two showed in the first 24 h. any distortion, but this became plain in the 19 cases on the second day, and still more conspicuous at the close of the third day, by which time new tips had been partially or completely regenerated. When therefore a new tip is reformed on an oblique stump, it probably is developed sooner on one side than on the other: and this in some manner excites the adjoining part to bend to one side. Hence it seems probable that Sachs unintentionally amputated the radicles on which he experimented, not strictly in a transverse direction.

 

This explanation of the occasional irregular growth of radicles with amputated tips, is supported by the results of cauterising their tips; for often a greater length on one side than on the other was unavoidably injured or killed. It should be remarked that in the following trials the tips were first dried with blotting-paper, and then slightly rubbed with a dry stick of nitrate of silver or lunar caustic. A few touches with the caustic suffice to kill the root-cap and some of the upper layers of cells of the vegetative point. Twenty-seven radicles, some young and very short, others of moderate length, were suspended vertically over water, after being thus cauterised. Of these some entered the water immediately, and others on the second day. The same number of uncauterised radicles of the same age were observed as controls. After an interval of three or four days the contrast in appearance between the cauterised and control specimens was wonderfully great. The controls had grown straight downwards, with the exception of the normal curvature, which we have called Sachs’ curvature.

Of the 27 cauterised radicles, 15 had become extremely distorted; 6 of them grew upwards and formed hoops, so that their tips sometimes came into contact with the bean above; 5 grew out rectangularly to one side; only a few of the remaining 12 were quite straight, and some of these towards the close of our observations became hooked at their extreme lower ends.

Radicles, extended horizontally instead of vertically, with their tips cauterised, also sometimes grew distorted, but not so commonly, as far as we could judge, as those suspended vertically; for this occurred with only 5 out of 19 radicles thus treated.

 

Instead of cutting off the tips, as in the first set of experiments, we next tried the effects of touching horizontally extended radicles with caustic in the manner just described. But [page 530]

some preliminary remarks must first be made. It may be objected that the caustic would injure the radicles and prevent them from bending; but ample evidence was given in Chapter III. that touching the tips of vertically suspended radicles with caustic on one side, does not stop their bending; on the contrary, it causes them to bend from the touched side. We also tried touching both the upper and the lower sides of the tips of some radicles of the bean, extended horizontally in damp friable earth. The tips of three were touched with caustic on their upper sides, and this would aid their geotropic bending; the tips of three were touched on their lower sides, which would tend to counteract the bending downwards; and three were left as controls. After 24 h. an independent observer was asked to pick out of the nine radicles, the two which were most and the two which were least bent; he selected as the latter, two of those which had been touched on their lower sides, and as the most bent, two of those which had been touched on the upper side. Hereafter analogous and more striking experiments with Pisum sativum and Cucurbita ovifera will be given. We may therefore safely conclude that the mere application of caustic to the tip does not prevent the radicles from bending.

 

In the following experiments, the tips of young horizontally extended radicles were just touched with a stick of dry caustic; and this was held transversely, so that the tip might be cauterised all round as symmetrically as possible. The radicles were then suspended in a closed vessel over water, kept rather cool, viz., 55o - 59o

1 ... 83 84 85 86 87 88 89 90 91 ... 99

Free e-book «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕» - read online now

Similar e-books:

Comments (0)

There are no comments yet. You can be the first!
Add a comment